Affine curves on which every point is a set-theoretic complete intersection

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Set Theoretic Complete Intersection for Curves in a Smooth Affine Algebra

Let A be a regular ring of dimension d ( d ≥ 3 ) containing an infinite field k. Let n be an integer such that 2n ≥ d+3. Let I be an ideal in A of height n and P be a projective Amodule of rank n. Suppose P ⊕A ≈ A and there is a surjection α: P → I. It is proved in this note that I is a set theoretic complete intersection ideal. As a consequence, a smooth curve in a smooth affine C-algebra with...

متن کامل

Set - Theoretic Complete Intersection Monomial

In this paper we describe an algorithm for producing infinitely many examples of set-theoretic complete intersection monomial curves in P n+1 , starting with a single set-theoretic complete intersection monomial curve in P n. Moreover we investigate the numerical criteria to decide when these monomial curves can or cannot be obtained via semigroup gluing.

متن کامل

Modules for which every non-cosingular submodule is a summand

‎A module $M$ is lifting if and only if $M$ is amply supplemented and‎ ‎every coclosed submodule of $M$ is a direct summand‎. ‎In this paper‎, ‎we are‎ ‎interested in a generalization of lifting modules by removing the condition‎"‎amply supplemented‎" ‎and just focus on modules such that every non-cosingular‎ ‎submodule of them is a summand‎. ‎We call these modules NS‎. ‎We investigate some gen...

متن کامل

4 Se p 20 07 PRODUCING SET - THEORETIC COMPLETE INTERSECTION MONOMIAL CURVES IN

In this paper we produce infinitely many examples of set-theoretic complete intersection monomial curves in P n+1 , starting with a set-theoretic complete intersection monomial curve in P n. In most of the cases our results cannot be obtained through semigroup gluing technique and we can tell apart explicitly which cases are new.

متن کامل

On toric varieties which are almost set-theoretic complete intersections

We describe a class of affine toric varieties V that are set-theoretically minimally defined by codimV + 1 binomial equations over fields of any characteristic.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Algebra

سال: 1984

ISSN: 0021-8693

DOI: 10.1016/0021-8693(84)90163-7